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Abstract

Verification of microkernels, device drivers, and crypto routines requires analy-
ses at the binary level. In order to automate these analyses, in the last years
several binary analysis platforms have been introduced. These platforms share
a common design: the adoption of hardware-independent intermediate repre-
sentations, a mechanism to translate architecture dependent code to this rep-
resentation, and a set of architecture independent analyses that process the
intermediate representation.

The usage of these platforms to verify software introduces the need for trust-
ing both the correctness of the translation from binary code to intermediate
language (called transpilation) and the correctness of the analyses. Achieving a
high degree of trust is challenging since the transpilation must handle (i) all the
side effects of the instructions, (ii) multiple instruction encodings (e.g. ARM
Thumb), and (iii) variable instruction length (e.g. Intel). Similarly, analyses
can use complex transformations (e.g. loop unrolling) and simplifications (e.g.
partial evaluation) of the artifacts, whose bugs can jeopardize correctness of the
results.

We overcome these problems by developing a binary analysis platform on
top of the interactive theorem prover HOL4. First, we formally model a binary
intermediate language and we prove correctness of several supporting tools (i.e.
a type checker). Then, we implement two proof-producing transpilers, which
respectively translate ARMv8 and CortexM0 programs to the intermediate lan-
guage and generate a certificate. This certificate is a HOL4 proof demonstrating
correctness of the translation. As demonstrating analysis, we implement a proof-
producing weakest precondition generator, which can be used to verify that a
given loop-free program fragment satisfies a contract. Finally, we use an AES
encryption implementation to benchmark our platform.
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Figure 1: Architecture of the analysis platform. Gray components and non-dashed arrows are
contributions described in this paper

1. Introduction

Despite the existence of formally verified compilers, the verification of bi-
nary code is a critical task to guarantee trustworthiness of systems. This is
particularly necessary for software mixing high-level language with assembly
(system software), using ad-hoc languages and compilers (specialized software),
in presence of instruction set extensions (like for encryption and hashing), and
when the source code is not available (binary blobs). This necessity is not only
limited to the general-purpose computing scenario but also applies to connected
embedded systems, where software bugs can enable a remote attacker to tamper
with the security of automobiles, payment services, and smart IoT devices.

The need of semi-automatic analysis techniques for binary code has lead
to the development of several tools [1, 2, 3]. To handle the complexity and
heterogeneity of modern instruction set architectures (ISA), all these tools follow
a common design (see Figure 1): They have introduced a platform independent
intermediate representation that allows to implement analysis independently of
(i) names and number of registers, (ii) instruction decoding, (iii) endianness of
memory access, and (iv) instruction side-effects (like updating conditional flags
or the stack pointer). This intermediate representation is often a dialect of the
Valgrind’s IR [4].

Even if the existing binary analysis platforms have been proved successful
thanks to the automation they provide, their usage for verifying software in-
troduces the need of trusting both the transpiler (i.e. the tool translating from
machine code to intermediate language) and the analysis. Soundness of the
transpiler should not be foregone: It may have to handle multiple instruction
encodings (e.g. ARM Thumb), variable instruction length (e.g. Intel), and com-
plex side effects of instructions (e.g. ARM branch with link and conditional
executions). Clearly, a transpiler bug jeopardizes the soundness of all analyses
done on the intermediate representation. Similarly, complex analyses involve
program transformations (e.g. loop unrolling and resolution of indirect jumps)
and simplifications (e.g. partial evaluation) that are difficult to implement cor-
rectly.
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To handle these issues we implement a binary analysis tookit whose results
are machine checkable proofs. The prototype tookit consists of four compo-
nents: (i) formal models of the Instruction Set Architectures (ISAs), (ii) the
formal model of the intermediate language, called Binary Intermediate Rep-
resentation (BIR), (iii) a proof-producing transpiler, and (iv) proof-producing
analysis tools. As verification platform, we selected the interactive theorem
prover HOL4, due to the existing availability of formal models of commodity
ISAs [6, 7]. Here, we chose ARMv8 [8] and CortexM0 [9] as demonstrating ISAs.
For the target language, we implemented a deep embedding of a machine inde-
pendent language, which can represent effects to registers, flags, and memory of
common architectures and it is relatively simple to analyse. Verification of the
transpilation is done via two HOL4 proof producing procedures, which trans-
late respectively ARMv8 and CortexM0 programs to IL programs, and yield
the HOL4 proof that demonstrates the correctness of the result. The theorem
establishes a simulation between the input binary program and the generated IL
program, showing that the two programs have the same behavior. Our contri-
bution enables a verifier to prove properties of the generated IL program (i.e. by
directly using the theorem prover or proof-producing analysis techniques) and
to transfer them to the original binary program using the generated simulation
theorems. As demonstrating analysis, we implement a proof-producing weak-
est precondition propagator, which can be used to verify that a given loop-free
program fragment satisfies a contract.

Outline. We present the state of the art and the previous works relating to
our contribution in Section 2. Section 3 introduces the HOL4 formal models
of the ISAs and the BIR language. Section 4 and Section 5 present the two
proof-producing tools: the certifying transpiler and the weakest precondition
generation. We demonstrate that the theorems produced by the proof producing
tools can be used to transfer verification conditions in Section 6. In Section 7,
we test and evaluate our tool. We give concluding remarks in Section 8.

New contributions. We briefly describe the new contributions of this paper with
respect to [10]. The weakest precondition generation and the corresponding
optimization is a new proof producing tool. Therefore Section 5 was not present
in [10]. Technically, the BIR model and the transpiler have been heavily re-
engineered, for this reason Sections 3.2 and 4 have been adapted to introduce
some of the new concepts (e.g. the weak transition relation) and tools (e.g.
the type checker, the pre-verified theorems that speed up the transpilation).
Also, Section 7 has been rewritten, since it evaluates the new transpiler and the
weakest precondition procedure. Finally, the transpiler has been extended to
support CortexM0. This allows us to demonstrate that the transpiler can be
easily adapted to support new architectures and the requirements for specific
proofs for the transpiler are limited.
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2. Related work

Recent work has shown that formal techniques are ready to achieve detailed
verification of real software, making it possible to provide low-level platforms
with unprecedented security guarantees [11, 12, 13]. For such system software,
limiting the verification to the source code level is undesirable. A modern com-
piler (e.g. GCC) consists of several millions of lines of code, in contrast to
micro-kernels that consist of few thousand lines of code, making it difficult to
trust the compiler output even when optimization is disabled1.

To overcome this limitation, formally verified compilers [14, 15, 16] and
proof/producing compilers [17] have been developed. Similarly to our work,
these compilers use detailed models of the underlying ISA to show the correct-
ness of their output. This usually involves a simulation theorem, which demon-
strates that the behavior of the produced binary code resembles the one specified
by the semantics of the high level language (e.g. C or ML). These theorems per-
mit properties verified at the source-level to be automatically transferred to the
binary-level. For instance, CompCert has been used in [18] to verify security
of OpenSSL HMAC by transferring functional correctness of the source code to
the produced binary.

Even if formally verified compilers obviate the need for trusting their output,
they do not fulfill all the needs of verified system software. Some of these com-
pilers target languages that are unsuitable for developing system software (e.g.
ML cannot be used to develop a microkernel due to its garbage collector). Also,
they do not support mixing the high-level language with assembly code, which
is necessary for storing and restoring the CPU context or for managing the page
table. Some of the effects of these operations can break the assumptions made
to define a precise semantics of the high level language (e.g. a memory write
can alter the page table which in turn affects the virtual memory layout). Also,
some properties (e.g. absence of side channels created by non-secure accesses
to the caches) cannot be verified at the source code level; the analysis must
be aware of the exact sequence of memory accesses performed by the software.
Finally, binary blob analysis is imperative for verifying memory safety of binary
code whose source code is not available (e.g. the power management of ARM
trusted firmware).

Unfortunately, detailed formal specifications of machine languages (e.g. the
ones used to verify compiler correctness [19]) consist of thousands of lines of def-
initions. The complexity of these models makes them unusable to directly verify
any binary code that is not a toy example. Moreover, the target verification
tools, usually interactive theorem provers, provide little or no support for either
automatic reasoning or reuse of algorithms among different hardware models.
To make machine-code verification proofs reusable by different architectures,
Myreen et al. [20] developed a proof-producing decompilation procedure. Those

1An example of a bug found in GCC: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
80180
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tools have been implemented in the HOL4 system and have been used by the
seL4 project to check that the binary code produced by the compiler is correct,
permitting to transfer properties verified at the source code level to the actual
binary code executed by the CPU [21]. The same framework has been used to
verify a bignum integer library [22]. However, the automation provided by this
framework is still far from what is provided by today’s binary analysis platforms
(e.g. [1, 2, 3]). These provide tools to compute and analyze control-flow graphs,
to perform abstract interpretation and symbolic execution, to verify contracts,
to verify information flow properties [23], and to analyze side channels [24].
On the other hand, their usage requires to trust both the transpiler and the
implementation of the analysis. Due to the complexity of writing a transpiler
for each architecture, recent work has been done to synthesize the transpiler
from compiler backends [25]. However, this requires to trust both: the synthesis
procedure and the compiler backend.

Regarding trustworthy weakest precondition generation, which is our demon-
strating analisys, Vogels et al. [26] verified the soundness of an algorithm for
a simple imperative while language in Coq. However, their work does not fit
the needs of a trustworthy verification condition generator for a verification
toolkit, since the target language is not designed to handle unstructured binary
programs.

3. Formal Models

3.1. The ARMv8 and CortexM0 models

In our work, we use the ARMv8 and CortexM0 models developed by Fox [6],
which are constructed from the pseudocode described in the ARM specifica-
tions [8, 9]. These models provide detailed HOL4 formalization of the effects of
the instructions, taking into account the different execution modes, flags, and
other characteristics of the processor behavior.

We start describing the ARMv8 model. The system state is modeled as a
tuple s = 〈r, sr, p,m〉. Here, r represents a sequence of 64-bit general purpose
registers. We identify the i-th register with r(i). The tuple sr = 〈pc, sp, lr〉 con-
tains the special registers representing the program counter, the stack pointer,
and the link register respectively. The tuple p represents the current proces-
sor state and contains the arithmetical flags. The 64-bit addressable memory
is modeled as the function m : B64 → B8. Finally, the system behavior is
represented by the deterministic transition relation s → s′, describing how the
ARMv8 state s reaches the state s′ by executing a single instruction. The tran-
sition relation models the behavior of standard ARMv8 ISA, including fetching
four bytes from memory, decoding the instruction, and applying its effects to
registers, flags, and memory. Hereafter, we use . to access tuple fields (e.g.
s.sr.pc states for the program counter of the state s) and S to represent all
possible states.

The CortexM0 model has a similar flavour, with main differences consist-
ing of the general purpose registers being 32-bit and the memory being 32-bit
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addressable memory. Also, CortexM0 has variable encoding, allowing each in-
struction to use either two or four bytes. Hereafter, when needed, we use sub-
scripts v8 and M0 to respectively identify ARMv8 and CortexM0 models, i.e.
→M0 is the transition relation of the CortexM0 model.

The HOL4 machine models consist of hundreds of definitions and their com-
plexity makes it difficult to analyze large programs. To simplify the analyses,
the models are equipped with a mechanism to statically compute the effects
of a single instruction via the step function. Let i be the binary encoding of
an instruction and ad be the address where the instruction is stored, then the
function step(i, ad) returns a list of step theorems [st1, . . . , stn]. Each theorem
stj has the following structure:

∀s. fetch(s.m, s.sr.pc) = i ∧ s.sr.pc = ad ∧ cj(s)⇒ s→ tj(s)

where fetch is a function that reads the instruction from the memory. Intuitively,
each step theorem describes one of the possible behaviors of the instruction and
consists of the guard condition cj that enables the transition and the function
tj that transforms the starting state into the next state. We use three examples
from the ARMv8 model to illustrate this mechanism.

Let the instruction stored at the address 0x1000000c be the addition of the
registers x0 and x1 into the register x0 (whose encoding is 0x8b000020), the
step function produces the following step theorem:

∀s. fetch(s.m, s.sr.pc) = 0x8b000020 ∧ s.sr.pc = 0x1000000c⇒
s→

(
λs′.s′ with r(0) = s′.r(0) + s′.r(1) with sr.pc = s′.sr.pc+ 4

)
s

(where s′ with r(0) = v updates the register x0 of the state s′ with v). In this
case, only one theorem is generated, and there is no guard condition (i.e. c1 is
a tautology).

Some machine instructions (i.e. conditional branches) can have different be-
havior according to the value of some state components. In these cases, the
step function produces as many theorems as the number of possible execution
cases. For example, the output of the step function for the Signed Greater Than
branch instruction consists of the following two theorems:

∀s. fetch(s.m, s.sr.pc) = 0x54fffe8c ∧ s.sr.pc = 0x1000000c

∧ s.p.Z = 0 ∧ s.p.N = s.p.V⇒
s→ (λs′.s′ with sr.pc = s′.sr.pc− 0x30)s

∀s. fetch(s.m, s.sr.pc) = 0x54fffe8c ∧ s.sr.pc = 0x1000000c

∧¬ (s.p.Z = 0 ∧ s.p.N = s.p.V)⇒
s→ (λs′.s′ with sr.pc = s′.sr.pc+ 4)s

That is, if the test succeeds (i.e. c1 = s.p.Z = 0 ∧ s.p.N = s.p.V holds) then the
jump is taken (in this case jumping back in a loop to the address pc − 0x30),
otherwise (i.e. c2 = ¬(s.p.Z = 0 ∧ s.p.N = s.p.V) holds) the jump is not taken
(the program counter is updated to point to the next instruction). Notice that
for every state s the condition c1 ∨ c2 hold.
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Finally, some instructions (i.e. memory stores) can have unsound behavior if
some conditions are not met. In these cases, the step function generates the step
theorems only for the correct behaviors; for a given instruction, let st1, . . . , stn
be the generated theorems and c1, . . . , cn the corresponding guards, the behavior
of the instruction is soundly deduced by the step function for every state s such
that

∨
j cj(s) holds and can not be deduced otherwise. For example, the output

of the step function for a memory store consists of the theorem:

∀s. read32(s.m, s.sr.pc) = 0xf90007e0 ∧ s.sr.pc = 0x1000000c

∧ aligned(s.sr.sp+ 8)⇒

s→
(
λs′.s′ with m = write64(s′.m, s′.sr.sp + 8, s′.r(0))

with sr.pc = s′.sr.pc+ 4

)
s

Intuitively, the step function can predict the behavior only for states having the
target address (i.e. s.sr.sp+ 8) aligned.

3.2. The BIR model

Our platform uses the machine independent Binary Intermediate Represen-
tation (BIR). In this representation, a statement has only explicit state changes,
i.e. there are no implicit side effects, and it can only affect one variable.

BIR’s syntax is depicted in Table 1. A program is a list of blocks, each one
consisting of a uniquely identifying label (i.e. a string or an integer), a list of
block statements, and one control flow statement. In the following we assume
that all programs are well defined, i.e. they have no duplicate block labels. A
statement can affect the state by (i) assigning the evaluation of an expression to
a variable, (ii) terminating the system in a failure state if an assertion does not
hold. A control flow statement can (conditionally or unconditionally) modify
the control flow. As usual, labels are used to refer to the specific locations in
the program and can be the target of jump statements.

BIR expressions are built using constants (i.e. strings and integers), con-
ditionals (i.e. ifthenelse), standard binary and unary operators (ranged over
by ♦b and ♦u respectively) for finite integer arithmetic and casting, and
accessing variables of the environment (i.e. var). Additionally, two types of
expressions can operate on memories. The expression load (exp1, exp2, τreg,n)
reads n bytes from the memory exp1 starting from the address exp2. The ex-
pression store (exp1, exp2, exp3, τreg,n) returns a new memory in which all the
locations have the same values as the initial memory exp1 except the addresses
exp2+i where i ∈ [0 . . . n−1] that contain the chunks of exp3. Figure 2 provides
an example of a BIR program.

Hereafter, we use ∆ to represent the set of all possible strings. These can
be used to identify both labels and variable names. We use τ to range over BIR
data types; let n ∈ {1, 8, 16, 32, 64}, the type for words of n-bits is denoted by
τreg,n and the type for memories addressed using n-bits is denoted by τmem,n.
We use T and V to represent the set of all BIR types and values respectively.

A BIR environment env maps variable names (given as strings) to pairs of
type and value; env : ∆→ (T × V ). Types of variables are immutable and any
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pr := block∗

block := (string | integer, bst∗, cfst)
bst := assign (string, exp) | assert (exp)

cfst := jmp (exp) | cjmp (exp, exp, exp)

exp := string | integer |
ifthenelse (exp, exp, exp) |
♦u exp | exp ♦b exp | var string |
load (exp, exp, τ) | store (exp, exp, exp, τ)

Table 1: BIR’s syntax

wrongly typed operation produces a run-time failure. The semantics of BIR
expressions is modeled by the evaluation function eval: It takes an expression
exp and an environment env and yields either a value having a type in T or
•. The evaluation intuitively follows the semantics of operations by recursively
evaluating the sub-expressions given as operands. The value • results when
operators and types are incompatible, thus modeling a type error.

A BIR state bs = (env, p) ∈ BS is a pair of an environment env and a
program counter p ∈ ∆∪B64∪{⊥, •}. While executing a program, the program
counter is ∆∪B64 and is the label of the executing block. In the cases of either
type mismatch or failed assertion, the execution terminates setting the program
counter to either • (type mismatch) or ⊥ (failed assertion). Notice that the
program is not part of the state, disallowing run-time changes to the program.

The system behavior is modeled by the deterministic transition relation pr :
bs  bs′, which describes the execution of one BIR block. In HOL4, this
relation is modeled by the execution function exc, which defines the small step
semantics of an entire block. Hereafter, we use bs′ ∈ {⊥, •} when the program
counter of the resulting states represents one of the possible errors. The relation
 is defined on top of two other functions: bst : env → env′ models the
environment effects of a single block statement bst, and cfst : env → p′ models
the program counter resulting by executing a single control flow statement cfst.
Both functions can return ⊥ and • in case of violated assertions and type errors
respectively.

The execution of assign (X, exp) assigns the evaluation of the expression
exp to the variable X. Let v = eval (exp, env) and t be the type of v, the value
of the variable is updated in the context (env[X ← (t, v)]). The statement
fails in case of a type mismatch: v = • or env(X) = (t′, ) ∧ t 6= t′. The
statement assert (exp) has no effects if the expression evaluates to true (i.e.
eval (exp, env) = (τreg,1, 1)) and terminates in an error state otherwise.

The execution of jmp (exp) jumps to the referenced block, by setting the
program counter to eval (exp, env). If the type of exp is neither string nor
integer then the statement fails. The statement cjmp (expc, exp1, exp2) changes
the control flow based on the condition expc. The statement fails if the type of

8






0x400000,[

assign (R1, load (var(MEM ),var(SP), τreg,32))
assign (SP ,var(SP) + 4)

]
,

jmp (0x400004)

 ,


0x400004,[

assign (MEM , store (var(MEM ),var(SP),var(R1 ), τreg,32))
assign (SP ,var(SP)− 4)

]
,

jmp (0x400008)




This BIR program pops and pushes a register from/to the stack. The register
is modeled by the variable R1 , the stack pointer by the variable SP , and the
memory by the variable MEM . The program consists of two blocks, which
are labeled 0x400000 and 0x400004. The first block assigns to R1 the content
of MEM starting from SP , then it increases the stack pointer. The second
block saves R1 into the stack and decreases the stack pointer. Notice that
store (var(MEM ),var(SP),var(R1 ), τreg,32) returns a modified copy of MEM
and does not directly modify MEM . Therefore, to model a memory write, the
new memory must be explicitly assigned to the variable MEM .

Figure 2: Example of a BIR program

the condition is not τreg,1 or the targets (i.e. eval (exp1, env) or eval (exp2, env))
are not valid labels. Notice that the targets of the jump are evaluated using
the current context, allowing BIR to express indirect jumps that are resolved
at run-time.

The HOL4 model is equipped with several supporting tools and definitions,
which simplify the development of the transpiler and analyses. A weak transition
relation is defined to hide some executions steps. Let LS be a set of labels,
 LS : BS 7→ BS is a partial function built on top of the single-block small
step semantics, which yields the first reachable state that is an error state or
that has the program counter in LS. The function is undefined if no error
and no label in LS are reachable. A formally verified type checker permits
to rule out run-time type errors. Well typed programs cannot have wrongly
typed expressions (i.e. arguments of binary operators must have the same type,
values to store in memory must match the specified type, etc.), use only one
type per variable name, use expressions with correct types in statements (i.e.
conditions in assertions and conditional jumps must be boolean expressions). A
pair consisting of a program and an environment is well typed if the program
is well typed and if for every variable the type of variable in the environment
matches the usage of the variable in the program. Well typed program fragments
that start from well typed environments cannot cause type errors and can only
reach well typed environments.
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4. Certifying Transpiler

The translation procedure uses a mapping of HOL4 machine states to BIR
states. Every machine state field must be mapped to a BIR variable or to
the program counter. Our framework provides one default mapping for each
supported architecture: ARMv8 and CortexM0. In both cases, the i-th register
is mapped to the variable R〈i〉 (i.e. R0 represents the register number zero), the
variable MEM represents the system memory, the BIR program counter reflects
the machine’s program counter, and every flag is mapped to a proper variable.
This mapping induces a simulation relation ∼ ⊆ BS×S that relates BIR states
to machine states.

To transform a program to the corresponding BIR fragment, we need to
capture all possible effects of the program execution in terms of affected regis-
ters, flags and memory locations. The generated BIR fragment should emulate
the behaviour of the instructions executed on the machine. This goal is ac-
complished by reusing the step function and the following two HOL4 certifying
procedures.

• A procedure to translate HOL4 word terms (i.e. those having type B64, B8,
B etc.) to BIR expressions. This procedure is used to convert the guards
of the step theorems and the expressions contained in the transformation
functions.

• A procedure to translate a single instruction to the corresponding BIR
fragment. This procedure computes the possible effects of an instruction
using the transformation functions of the step theorems.

To phrase the theorem produced by the transpiler we introduce the follow-
ing notations. A binary program BIN pr is represented by a finite set of pairs
(adj , ij), where each pair represents that the instruction ij is located at the
address adj . The predicate stored(s,BIN pr) states that the program BIN pr is

stored in the memory of the state s (formally, stored(s,BIN pr)
def
= ∀(adj , ij) ∈

BIN pr. fetch(s.m, adj) = ij). A single machine instruction can be transpiled
to multiple blocks. The transpiler uses a naming convention to distinguish the
label of the first block produced for an instruction from the labels of the other
blocks. Hereafter, we use LS1 to identify the set of labels that represents the
entry point of instructions. We denote n transitions of machine states with →n

and n transitions of BIR visiting LS1 with  n
LS1

. The translation procedure
generates a theorem that resembles compiler correctness2:

Theorem 1 Let ad0 be the entry point of the program BIN pr. For every state
s and BIR state bs, if stored(s,BIN pr), s.sr.pc = ad0, and bs ∼ s, then

2The ISA and BIR transition systems are deterministic, thus the transition relations are
functions. For this reason we omit quantifiers over the states on the right hand side of
transitions, since they are unique.
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Figure 3: The theorem demonstrated by the transpiler

1. for every n > 0 if s→n s′ then
pr : bs n

LS1
bs′ ∧ (bs′ = ⊥ ∨ bs′ ∼ s′), and

2. for every n > 0 if pr : bs n
LS1

bs′ ∧ bs′ 6= ⊥ then

s→n s′ ∧ bs′ ∼ s′.

The meaning of the transpiler theorem is depicted in Figure 3. Each machine
instruction is translated to multiple blocks, the first one having a label in LS1,
and each block consisting of multiple statements. Assuming that the program is
stored in machine memory, the state is configured to start the execution from the
entry point ad0 of the program, and the initial HOL4 machine state resembles
the initial BIR state, then (1) for every state s′ reachable by the ISA model,
there is an execution of the BIR program pr that results (after visiting n blocks
whose labels are in LS1) in either an error state (bs′ = ⊥) or in a state bs′ that
resembles s′, and (2) for every state bs′ reachable by the BIR program after
reaching the first block of an instruction, there is an execution of the machine
that re-establishes the simulation relation.

Error states permit to identify if an initial configuration can cause a program
to reach a state that cannot be handled by the transpiler (e.g. self-modifying
programs or programs containing instructions whose behavior cannot be pre-
dicted by the step function). It is worth noticing that these cases cannot be
identified statically without knowing the program preconditions (e.g. misaligned
memory accesses can be caused by the initial content of the stack where pointers
are stored) and must be ruled out when verifying the program.

4.1. Translation of expressions

In order to build the transpiler on top of the step function, the HOL4 ex-
pressions occurring in the guards and the transformation functions must be
converted to BIR expressions. For example, while translating the binary in-
struction 0x54fffe8c of Section 3.1 to a conditional jump, the expressions
s.p.Z = 0 ∧ s.p.N = s.p.V and s′.sr.pc − 0x30 must be expressed in BIR to
generate the condition and the target of the jump respectively.

Let e be a HOL4 expression, the output of the transpiler is the theorem
∀env.A(env) ⇒ (eval (exp, env) = e), stating that, if the environment satisfies
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the assumption A, then the evaluation of exp is e. These assumptions usually
constrain the values of the variables in the environment to match the free vari-
ables of the HOL4 expressions. For instance, for the expression s.p.N = s.p.V the
transpiler generates the theorem ∀env, s.(env(′′N ′′) = (τ1, s.p.N)∧ env(′′V ′′) =
(τ1,V))⇒ (eval ((var ′′N ′′ = var ′′V ′′), env) = (N = V)).

If a HOL4 operator has no direct correspondence in BIR, the transpiler uses
a set of manually verified theorems to justify the emulation of the operator via
a composition of the primitive BIR operators. This is the case for expressions
involving bit extractions (i.e. most significant bit, least significant bit, etc),
alignment, reversing endianness, and rotation.

For several ISA models, special care must be taken to convert expressions
involved in updating status flags. For instance, both ARMv8 and CortexM0 use
so called NZCV status flags for conditional execution, where

• Negative is set if the result of a data processing instruction was negative

• Zero is set if the result is zero

• Carry is set if is set if an addition, subtraction or compare causes a result
bigger than word size

• oVerflow is set if an addition, subtraction or compare produces a signed
result bigger than 31/63 bit (for CortexM0 and ARMv8 respectively), i.e.
the largest representable positive number

The expressions produced by the ISA models for these flags involve conversion
of words to natural numbers and arithmetic operations with arbitrary precision.
For example, following the pseudocode of the ARMv8 reference manual [8], the
carry flag in 64-bit additions is computed by the expression [x]+[y] ≥ 264, where
x, y ∈ B64 and [·] : B64 → N is their interpretation as natural numbers. Both
the inequality and the addition cannot be directly converted as BIR expression,
because BIR can only handle finite arithmetics3. For the carry flag the transpiler
uses the theorem ∀n > 0. ∀x, y ∈ Bn. ([x] + [y] ≥ 2n)⇔ ((∼ x) <w y), where ∼
and <w are complement and unsigned comparison of bitvectors respectively.

4.2. Translation of single instructions

The transpilation of a single instruction takes three arguments: the binary
code i of the instruction, the address ad of the instruction in memory, and a set
of memory address ranges MemR. The latter argument identifies which memory
addresses should not be modified by the instruction and is used to guarantee
that the program is not self-modifying. In fact, a self-modifying program cannot
be transformed to equivalent BIR programs (due to BIR following the Harvard
architecture). If an instruction modifies the program code then the translated
BIR program must terminate in an error state. The addresses in MemR are

3This design choice simplifies the development of analyses for BIR and the integration of
external tools, like SMT solvers supporting bitvectors

12



pr = [block0, block1, block2]
block0 = (ad, smts0)
smts0 = assert (expc)

cjmp (expc1 , ”ad-1”, ”ad-2”)
blocki = (”ad-i”, smtsi)
smtsi = assert(expm)

assign (tmpF1, expF1)
. . .
assign (F1,var tmpF1)
. . .
jmp (exp)

Figure 4: BIR fragment generated to one instruction

used to instrument the instruction transpiler with the information about where
the program code is stored. Hereafter we use pr = transpile(i, ad,MemR)
to represent that the transpiler produces the program fragment (sequence of
blocks) pr. Also, we use pr ∈ pr′ to represent that a program pr′ contains the
fragment pr.

The transpiler uses the step function to compute the behavior of the in-
put instruction i and to generate the step theorems [st1, . . . , stn], where stj is
∀s. fetch(s.m, s.sr.pc) = i ∧ s.sr.pc = ad ∧ cj(s) ⇒ s → tj(s). Hereafter we
assume that the step function generates two theorems (i.e. n = 2), which is the
case for conditional instructions in CortexM0 and branches in ARMv8. We will
comment on the other cases at the end of this section.

A single machine instruction can be translated to multiple BIR blocks, fol-
lowing the template of Figure 4. The label of the first block is equal to the
address of the instruction and is the only block having an integer label. The
other two blocks have string labels and represent the effects of the two step
theorems.

The behavior of the instruction can be soundly deduced by the step func-
tion only if one of the cj predicates holds (see Section 3.1). The transpiler
simplifies the disjunction of the guards demonstrating ∀s.

∨
j cj(s) = ec (where

ec is a HOL4 predicate) and translates it to a BIR expression expc (demon-
strating ∀env, s.((env, p) ∼ s) ⇒ (eval (expc, env) = ec)). The BIR statement
assert (expc) is generated as first statement of the first block. Intuitively, if a
machine state s does not satisfy any guard, then every similar BIR state (env, p)
does not satisfy the assertion, causing the BIR program to terminate in a error
state. On the other hand, if the BIR state satisfies the assertion, then every
similar machine state satisfies at least one of the guards, thus the instruction’s
behavior can be deduced by the step function.

The second task is to redirect the BIR control flow to the proper inter-
nal block according to the guards of the step theorems. The procedure trans-
lates c1 to a BIR expression expc1 ( demonstrating ∀env, s.((env, p) ∼ s) ⇒
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(eval (expc1 , env) = ec1)) and cjmp (expc1 , ”ad-1”, ”ad-2”) is generated as last
statement of the first block. Intuitively, a BIR state (env, p) executes block1 if
and only if the similar machine state s satisfies c1.

The third task is to translate the effects of the instruction on every field of
the machine state for every step theorem stj . Let f be one field of the machine
state (e.g. f = r(0) is the register zero) and let F be the corresponding variable
of BIR according to the relation ∼. The transpiler computes the new value eF
of the field (and demonstrates ∀s.(tj(s)).f = eF ). If eF = s.f then the machine
state’s field is not affected by the instruction and the corresponding variable F
should not be modified by the generated BIR block, otherwise the variable F
must be updated accordingly. The expression eF is translated to obtain the the-
orem ∀env.eval (expF , env) = eF and the BIR statement assign (tmpF, expF )
is generated. The need of a temporary variable tmpF is due to the presence
of instructions that can affect several variables, and whose resulting values de-
pend on each other (i.e. imagine an instruction swapping registers zero and one,
where t(s) = s with {r(0) = s.r(1) and r(1) = s.r(0)}). After all field values
have been computed and stored into the temporary variables, these are copied
into the original variables via the statement assign (F,var tmpF ).

Special care is needed for memory updates (i.e. f = m). The BIR program
should fail if the original program updates a memory location in MemR. The
transpiler inspects the expression eMEM to identify the addresses that can be
changed by the instruction and extracts the corresponding set of expressions
e1, . . . , en (in CortexM0 and ARMv8 a single instruction can store multiple reg-
isters). The expression

∧
i ei 6∈ MemR (which guarantees that no modified ad-

dress belongs to the reserved memory region) is translated to obtain the theorem
∀env.eval (expm, env) =

∧
i ei 6∈ MemR and the BIR statement assert(expm)

is added as preamble of the block. If the machine instruction modifies an ad-
dress in MemR, then the corresponding BIR state does not satisfy the assertion,
causing the BIR program to terminate in an error state.

Finally, the program counter field is used to generate statements that update
the control flow. The expression epc is translated to exppc and jmp(exppc) is
appended to the BIR fragment. If possible, epc is first simplified to be a constant,
which reduces the number of indirect jumps in the BIR program.

This procedure is generalized to handle arbitrary number of step theorems,
using one block per theorem. Moreover, the transpiler optimizes some common
cases. If the transformation function tj modifies only the program counter (i.e.
a conditional instruction, which behaves as NOP if the instruction condition
is not met) then blockj is not generated and the translation of (tj(s)).sr.pc is
used in place of ”ad-j” in cjmp (expc1 , ”ad-1”, ”ad-2”). If there is only one step
theorem, then the block j is merged with block0 and the conditional jump is
removed. If an updated state field f is not used to compute the value of other
fields then the temporary variable is not used.

A large part of the HOL4 implementation focuses on optimizing the verifi-
cation that the generated fragment resembles the original machine instruction.
This is done by preproved theorems about the template-blocks (i.e. block j),
which enable the transpiler to use the intermediate theorems generated for ex-

14



pressions and the step theorems to establish the instruction-theorem. The pre-
proved theorems for the template-blocks also ensure that these are well-typed,
statically guaranteeing that a generated fragment cannot cause a type error.

Theorem 2 Let pr = transpile(i, ad,MemR). For every machine state s, BIR
state bs, and BIR program pr′ if read32(s.m, s.sr.pc) = i, s.pc = ad, bs ∼ s,
and pr ∈ pr′, then

1. ∃bs′.pr′ : bs LS1
bs′

2. if s→ s′ and pr′ : bs LS1
bs′ 4 then

((bs′ = ⊥) ∨ (bs′ ∼ s′ ∧ ∀a ∈ MemR. s′.m(a) = s.m(a)))

The theorem shows (1) the BIR program either fails or reaches the first block
of an instruction starting from the first block of the translated one (i.e. the
internal blocks do not introduce loops), and (2) if the complete execution of the
generated blocks succeeds then the BIR program behaves equivalently to the
machine instruction and memory in MemR is not modified.

4.3. Transpiling programs

The theorems generated for every instruction are composed to verify Theo-
rem 1. Property (1) is verified by induction over n, using predicate MemR =
{ad | (ad, i) ∈ BIN pr}. This ensures that the program is in memory after
the execution of each instruction, thus allowing to make the assumption of the
translation theorem (i.e. ∀(adj , ij) ∈ BIN pr. read32(s.m, adj) = ij) an invariant.

Property (2) is verified by induction over n. Since bs ∼ s then the program
counter of bs points to the one of the block0 produced by the transpiler. There-
fore we can use the corresponding instruction-theorem to show that bs′ exists.
This and the fact that the ISA transition relation is total enable part (2) of the
instruction-theorem, showing that the machine instruction behaves equivalently
to the BIR block.

4.4. Support for more architectures

In the following, we review the modifications of the certifying procedures
needed to support other common computer architectures, like MIPS, x86 and
ARMv7-A. The transpiler has three main dependencies: A formal model of
the architecture, a function producing step theorems, and the definitions of a
simulation relation. There exist HOL4 models for x86, x64, ARMv7-A, RISC-
V, and MIPS, which are equipped with the corresponding step function. The
simulation relation can differ for each architecture since it maps machine state
fields to BIR variables. In fact, the name, the number, and the type of registers
can be very different among unrelated architectures. However, defining the
simulation relation is straightforward, since it simply requires to map machine
state fields to BIR variables.

4We remark that → is deterministic and left total, and  LS is deterministic
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The expression translation has to handle the expressions of guard conditions
and transformation functions that are present in the step theorems. Since these
use HOL4 number and word theories, independently of the architecture, big
parts of the translation of Section 4.1 can be reused. There are two exceptions:
One is the possible usage of different word lengths, and the other is the need of
proving helper theorems to justify the emulation of operators that have no direct
correspondence in BIR (e.g. for the computation of the carry flag in CortexM0
and ARMv8, or to support specialized instructions for encryption).

Defining the simulation relation and extending the expression translation
enable the transpilation of single instructions of Section 4.2 to support a new
architecture, without requiring further modifications. In fact, the structure of
the produced BIR blocks is architecture independent and is ready to support
some peculiarities of MIPS and x64.

4.4.1. Delay slots

On the MIPS architecture, jump and branch instructions have a “delay slot”.
This means that the instruction after the jump is executed before the jump is
executed. The HOL4 model for MIPS handles delay slots using the shadow regis-
ters BranchDelay (bd), which can be either unset or the address of an instruction.
This register can be mapped to BIR using a boolean variable (BD SET ), which
holds if the shadow register is set, and a word variable (BD), which represents
the register value.

Let s be a MIPS state, the transition relation is undefined if s.sr.bd is set
and the instruction makes a jump (i.e. jumps are not allowed after jumps).
Otherwise it yields a state s′ where

• s′.sr.pc = s.sr.bd if s.sr.bd is set, otherwise s′.sr.pc = s.sr.pc+ 4

• s′.sr.bd is the target of jump if the instruction modifies the control flow,
otherwise s′.sr.bd is unset

The step theorems can be accordingly generated. Let c1, . . . , cn be the step
theorem’s guards of an instruction and let cjmp be the condition that causes
the instruction to modify the control flow (i.e. cjmp is always false if the cur-
rent instruction is neither a jump nor a branch),

∨
j cj(s) holds if s.sr.bd is

unset or cjmp does not hold. Following the template of Figure 4, the transpiler
will produce the assertion assert

(
(var ′′BD SET ′′ = F ) ∨ ¬expjmp

)
, where

∀env, s.((env, p) ∼ s) ⇒ (eval (expjmp, env) = cjmp). Non-jump and non-
branch instructions need multiple step theorems to model delay slots. These in-
structions could be translated via two BIR blocks: one executed when BD SET
holds and that jumps to BD ; and one that jumps to the next instruction when
BD SET does not hold. Finally, the variables BD SET and BD can be update
like all other register variables.

4.4.2. Different calling conventions

Intel x86 and x64 architectures have different calling conventions. In fact,
in x64 a limited number of parameters can be passed via registers. It is worth

16



noticing that the transpiler does not make any assumption on the calling con-
vention used. In fact, the transpiler procedure does not need to know symbols
and can handle programs that violate standard calling convention. In practice,
different calling conventions will result in different assembly instructions, whose
behavior is captured by the step theorems.

5. Weakest preconditon generation

Contract based verification is a convenient approach for compositionally ver-
ifying properties of systems. Due to the unstructured nature of binary code, a
binary program (and therefore the corresponding BIR program) can have multi-
ple entry and exit points. For this reason we adapt the common notion of Hoare
triples. Hereafter we assume programs and environments to be well typed. Let
P and Q be two partial functions mapping labels to BIR boolean expressions,
we say that a BIR program pr satisfies the contract {P}pr{Q}, if the execution
of the program starting from an entry point ad ∈ dom(P) and a state satisfying
the precondition P(ad) establishes the postcondition Q(ad′) whenever it reaches
an exit point ad′ ∈ dom(Q), formally

Definition 1 (BIR triple) {P}pr{Q} holds iff for every env, ad ∈ dom(P), if
eval (P(ad), env), pr : (env, ad) dom(Q) (env′, p′) then p′ 6= ⊥ and eval (Q(p′), env′).

There are well known semi-automatic techniques to verify contracts for pro-
gram fragments that are loop free and whose control flow can be statically
identified. A common approach is using precondition propagation, which com-
putes a precondition P′ from a program pr and a postcondition Q. Hence,
the algorithm must ensure that the triple {P′}pr{Q} holds. Also, if for every
ad ∈ dom(P′) the precondition P′(ad) is the weakest condition ensuring that
Q is met, then the algorithm is called weakest precondition propagation. The
desired contract holds if for every ad ∈ domP the precondition P(ad) implies
the computed precondition P′(ad). Therefore, the overall workflow is: specify
a desired contract, automatically compute the weakest precondition, and prove
the implication condition.

5.1. WP generation

Since the BIR transition relation models the complete execution of one block,
we consider a block the unit for which the algorithm operate. The weakest pre-
condition is propagated by following the control flow graph (CFG) backwards.
The CFG is a directed acyclic graph (due to absence of loops) with multiple
entry points and multiple exit points. For instance, Figure 5a depicts the CFG
of a program with blocks having labels l0 through l7, two entry points (i.e. l0
and l1) and two exit points (l6 and l7).

Our approach is to iteratively extend a partial function H, which initially
equals the postcondition partial function Q. This function maps labels to their
respective weakest precondition or postcondition in the case of exit points. For-
mally, the procedure preserves the invariant {H ↓

dom(Q)
}pr{Q} and H ↓dom(Q)=
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Figure 5: Iterations to compute the weakest precondition.

Q (where ↓D is the restriction of a function to the domain D and D is set
complement). Once H includes all entry points of the program, the weakest
precondition is obtained by the restriction H ↓dom(P). For each iteration, the
algorithm uses the following rule:

{H}pr{Q} ∧ {l 7→ P}pr{Q}
{H + {l 7→ P}}pr{Q}

It (1) selects the label l of a BIR block bl for which the domain of H contains
the labels of all successors (i.e. the weakest precondition of the successors have
already been computed); (2) computes the weakest precondition P for the label
l, demonstrating {l 7→ P}pr{Q}; (3) extends H as H+{l 7→ P}. Figure 5 depicts
an example of this procedure. The partial function H is defined for labels of
dark gray nodes, and light gray nodes represent nodes that can be selected by
(1). Figure 5a shows the initial state where only the exit nodes are mapped and
Figure 5b shows the results of the first iteration if l5 is selected. The algorithm
extends H with the weakest precondition for l5, making l3 available for selection
in the next iteration. Notice that after the first iteration, we cannot directly
compute the weakest precondition of l2, since we do not know the weakest
precondition of the child node labeled l4.

To compute the weakest precondition of a block compositionally, the defi-
nition of triples is lift to smaller elements of BIR, i.e. the execution of single
blocks and single statements:

Definition 2 Let bl be a block having label l, bst be a statement, and cfst be a
control flow statement:

• {P}bl{Q} holds iff for every (env, l) if eval (P, env) and [bl] : (env, l)  
(env′, p′) then p′ ∈ dom(Q) ∧ eval (Q(p′), env′)
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• {P}bst{Q} holds iff for every env if eval (P, env) and bst : env → env′

then env′ 6= ⊥ and eval (Q,env
′)

• {P}cfst{Q} holds iff for every env if eval (P, env) and cfst : env → p′

then p′ ∈ dom(Q) and eval (Q(p′), env)

To compute the weakest precondition for the label l (i.e. {l 7→ P}pr{Q}) the
proof producing procedure uses the following rules:

{H}pr{Q} ∧ pr[l] = bl ∧ {P}bl{H}
{l 7→ P}pr{Q}

{Pn+1}cfst{H} ∧
∧

i∈n...1 ({Pi}bsti{Pi+1})
{P1}([bst1, . . . , bstn], cfst){H}

Assuming that H is defined for every child of l and that the program block having
label l is bl, the weakest precondition of l can be computed by propagating the
preconditions H through the block, by computing the weakest precondition of
the execution of bl (i.e. {P}bl{H}). As usual for sequential composition, the
block precondition is computed by propagating the postcondition backwards.

Notice that, differently than blocks and control flow statements, internal
block statements always have one successor, therefore their postcondition is
a boolean expression instead of a partial function. The rules for the block
statements assign and assert are standard (we use {exp/v}Q to represent the
substitution of every occurrence of the variable name v in Q with the expression
exp):

{{exp/v}Q}assign (v, exp) {Q} {exp ∧Q}assert (exp) {Q}

The rules for the control flow statements jmp and cjmp are standard for un-
structured programs. Both rules access H for the successor labels, which requires
to identify the CFG of the program statically (e.g. the program fragment is free
of indirect jumps), and to have already computed the preconditions for the
successor labels (H(l), H(l1), and H(l2)).

{H(l)} jmp (l) {H} {exp⇒ H(l1) ∧ (¬exp)⇒ H(l2)} cjmp (exp, l1, l2) {H}

Steps (2) and (3) of the weakest precondition procedure have been formally
verified, by demonstrating soundness of the rules. Step (1) is a proof producing
procedure, which dynamically demonstrates for each iteration that the selection
of l is correct (i.e. that H contains all successors of l). This frees us from verifying
that the algorithm to select l and compute the CFG graph is correct, enabling
to integrate heuristics to handle indirect jumps, which can be incomplete and
difficult to verify. Also, our procedure only demonstrates soundness of the
generated precondition, but does not prove that it is the weakest one. This
task requires to dynamically build a counterexample showing that any weaker
condition is not a precondition. The lack of this proof does not affect the usage
of the tools, since it is not needed for contract based verification.
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5.2. Optimization

Weakest precondition propagation has two well known scalability issues.
Firstly, branches in the CFG can cause an exponential blowup. For instance,
in Figure 5 the precondition of node l5 is propagated twice (via l2 and l3) and
occurs twice as sub-expression of the precondition of the branch node l0. There
exist approaches [27] to handle this problem, however they generate precondi-
tions that are difficult to handle with SMT solvers, which can preclude their
usage for practical contract verification. The second problem, which Section 7
demonstrates to be critical for our scenario, is that expression substitutions in-
troduced by assignments can exponentially increase the size of preconditions.
Consider the following program fragment:

assign (Y,var X + var X)
assign (Z,var Y + var Y )

The weakest precondition of Q is {X+X/Y }({Y +Y/Z}Q). This equals {(X+
X) + (X +X)/Z}Q) when external substitutions are expanded. This behavior
is common in BIR programs that model binary programs, due to the presence
of indirect loads and stores. For example, in the following fragment

assign (MEM, store (var MEM,var SP + 4,var R3, τreg,n))
assign (R1, load (var MEM,addr1, τreg,n))
assign (R2, load (var MEM,addr2, τreg,n))
assign (MEM, store (var MEM,var R1,var R2, τreg,n))

both R1 and R2 are loaded from MEM , leading the expression modeling the
new value of the variable MEM to contain three occurrences of var SP + 4.

A solution to this issue is using single dynamic assignment and passifica-
tion. The program is transformed into an “equivalent” one, which ensures that
each variable is only assigned once for every possible execution path. Then a
second transformation generates a program that has assumptions in place of
assignment. However, this approach requires proof-producing transformers and
additional machinery to transfer properties from the the passified program to
the original one.

For the scope of contract based verification, we can obtain the same condi-
tions without applying these transformations. Our goal is to generate a precon-
dition P ′ and to check that for every BIR state this is entailed by the contract
precondition P , i.e. checking that P ⇒ P ′ is a tautology (we write this as
P ` P ′). This drives our strategy: (1) we generate a weakest precondition P ′

that contains substitutions, but we do not expand them to prevent the exponen-
tial growth of P ′; (2) we take the precondition P and we generate a substitution
free condition P ′′ using a proof producing procedure, which ensures that P ` P ′

if and only if P ` P ′′; (3) the original contract is verified by checking unsatisfa-
bility of ¬(P ⇒ P ′′).

For step (2) we developed a proof producing procedure that uses a set of
preproved inference rules. The rules capture all syntactic forms which can be
produced by the weakest precondition generation, i.e. conjunction, implication
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and substitution. If the precondition P ′ is a conjunction, we can recursively
transform the two conjuncts under the common premise P and combine the
transformed preconditions:

P ` A ⇐⇒ P ` A′ P ` B ⇐⇒ P ` B′

P ` (A ∧B) ⇐⇒ P ` (A′ ∧B′)

If P ′ is the implication A⇒ B, we can include A in the premise and trans-
form B recursively. Then we can restore the original implication form using the
transformed predicate B′:

(P ∧A) ` B ⇐⇒ (P ∧A) ` B′

P ` (A⇒ B) ⇐⇒ P ` (A⇒ B′)

If P ′ is the substitution {E/v}A and v is free in A, we apply the following
rule.

v ∈ fv(A) v′ /∈ (fv(P ) ∪ fv(E) ∪ fv(A)) v′ /∈ bv(A)

P ` {E/v}A ⇐⇒ P ` ((v′ = E)⇒ {v′/v}A)

This rule prevents the blowup by avoiding applying the substitution {E/v}A
and instead using the fresh variable v′ as an abbreviation for E in {v′/v}A.
Before continuing the application of transformation rules, we have to remove
the substitution {v′/v}A. This ensures that each application of this transfor-
mation rule removes one substitution from P ′. We achieve this by recursively
applying the substitution {v′/v} until we reach another substitution {E/v′′}B.
Normally, the application of substitution would require the application of the
inner substitution first, which would reintroduce the blowup problem. Instead,
we rewrite the expression as follows:

{v′/v}({E/v′′}B) = {({v′/v}E)/v′′}

{
B, if v = v′′

{v′/v}B otherwise

This moves the inner substitution out by individually applying the substitu-
tion {v′/v} to every free occurrence of v in E and B. This means that the
substitution should not be applied to B if v = v′′.

Notice that the last tautology transformation rule cannot be applied if v /∈
fv(A), since it can introduce type errors. Consider the predicate substitution
{(x + 1)/y}(x = true). Here, the two references to x have different types, i.e.
integer and boolean. By using this rule and applying all substitutions, we would
obtain P ⇒ (x = true) ` ⇐⇒ P ` (y′ = x + 1) ⇒ (x = true). However, this
equality does not hold, since the left side can be a tautology while the right side
cannot, since it is a wrongly typed expression. Practically, if v is not free in A
then the substitution has no effect and can be simply removed:

v /∈ fv(A)

P ` {E/v}A ⇐⇒ P ` A

21



This simplification procedure can be applied to the previous example, where
the weakest precondition of Q is {X+X/Y }({Y +Y/Z}Q). Let P be a precon-
dition, the simplification prevents the four repeated occurrences of the variable
X in the final substitution:

P ` {X +X/Y }({Y + Y/Z}Q)
⇐⇒ P ` (y′ = X +X)⇒ {y′/Y }({Y + Y/Z}Q)

where y′ 6∈ fv(Q)
⇐⇒ P ` (y′ = X +X)⇒ {y′ + y′/Z}({y′/Y }Q)
⇐⇒ P ` (y′ = X +X)⇒ (z′ = y′ + y′)⇒ {z′/Z}({y′/Y }Q)

where z′ 6∈ fv(Q)

6. Applications

The TrABin’s verification work flow consists of three tasks: (1) transpile a
binary program to BIR, (2) proving that the BIR program does not reach error
states, (3) proving that the desired properties of the BIR program hold, and (4)
using the refinement relation to transfer these properties to the original binary
program.

Task (2) can be done following the strategy of Section 5. Let P be the
partial function whose domain is the program entry points and values are the
corresponding preconditions, and let Q = {l 7→ true} be the partial function
whose domain is the exit points of the program which all map to the constant
true, error freedom of program pr can be verified by simply establishing the
contract {P}pr{Q}.

For (3) and (4) we show that the transpiler output and BIR contract ver-
ification can be used for four common verification tasks: Control Flow Graph
(CFG) analysis, contract-based verification, partial correctness refinement, and
verification of termination.

Knowing the CFG of a program is essential to many compiler optimizations
and static analysis tools. Furthermore, proving control flow integrity ensures
resiliency against return-oriented programming [28] and jump-oriented program-
ming attacks [29]. In its simplest form, the CFG consists of a directed connected
graph G, whose node set is B64: The graph G contains (ad1, ad2) if the program
can flow from the address ad1 to the address ad2 by executing a single instruc-
tion; The nodes EN ⊆ G represent the entry points of the program, which can
be multiple due to binary programs being unstructured.

Analyzing the CFG of a binary program requires to deal with indirect jumps.
Even if the source program avoids using function pointers, indirect jumps are
introduced by the compiler, e.g. to handle function exits and exceptions (for
example the ARM link register is used to track the return address of functions
and can be pushed to and popped from the stack). For this reason, the cor-
rectness of the control flow depends on the integrity of the stack itself. Thus,
verifying the CFG G of a program BIN pr requires assuming a precondition Pad

for every entry point ad ∈ EN , which constraints the content of the heap, stack
and registers.
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Definition 3 (Control flow graph integrity) For every machine state s such
that stored(s,BIN pr), s.sr.pc ∈ EN , and Ps.sr.pc(s), for every n, if s →n s1
and s1 → s2 then (s1.sr.pc, s2.sr.pc) ∈ G.

It is straightforward to show that CFG integrity can be verified by using the
transpiler theorem, by defining a BIR precondition P ′ that corresponds to P ,
and by proving the following verification conditions.

Verification Condition 1 (BIR control flow integrity) For every (env, p)
such that p ∈ EN , eval (P ′, env) and for every n if pr : (env, p) n

LS1
(env1, p1) LS1

(env2, p2), then p1 6= ⊥, p2 6= ⊥, and (p1, p2) ∈ G.

Verification Condition 2 (Transfer of precondition) For every bs and s
such that bs ∼ s, if P (s) then eval (P ′, bs).

Contract based verification for a binary program consists of verifying that a
program BIN pr meets the contract {P}BIN pr{Q}, when its executions start at
an entry point ad ∈ dom(P) and end at one of the exit points ad′ ∈ dom(Q).

Definition 4 (Contract verification) For every s and n such that stored(s,BIN pr),
s.sr.pc ∈ dom(P) and P(s.sr.pc)(s), if s →n s′ and s′.sr.pc ∈ dom(Q) then
Q(s′.sr.pc)(s, s′).

This property can be verified using the theorem produced by the transpiler,
by identifying BIR predicates (P ′, Q′) for every (P,Q), establishing the BIR
contract {P′}pr{Q′}, and by proving the following verification condition:

Verification Condition 3 (Transfer of contracts) For every bs, bs′, s, s′,
ad such that bs ∼ s and bs′ ∼ s′, if P(ad)(s) then eval (P′(ad), bs) and if
eval (Q′(ad), bs′) then Q(ad)(s, s′).

Partial correctness is proved as a refinement of an abstract specification and
by using contract verification. With composability of specifications in mind, we
assume that the specification is phrased such that domain and codomain are
the same. Let aout = fspec(ain) be a functional specification with the signature
fspec : A→ A.

Definition 5 (Partial correctness - refinement) For every s, a, n such that
stored(s,BIN pr), s.sr.pc ∈ EN , R(s, a), if s →n s′, and s′.sr.pc ∈ EX then
R(s′, fspec(a)).

Notice, that the refinement relation R(s, a) implicitly contains the mapping
from a to s and an invariant that permits to preserve the refinement. Starting
from R and fspec we can derive a verification condition suitable for contract-
based verification. The precondition P (s) is the invariant of the refinement re-
lation; the postcondition Q(s, s′) incorporates the functional specification fspec
with respect to the mapping of R.

Total correctness (or functional correctness) additionally requires termina-
tion:

23



Definition 6 (Termination verification) For every s such that stored(s,BIN pr),
s.sr.pc ∈ dom(P) and P(s.sr.pc)(s), exists n such that s →n s′ and s′.sr.pc ∈
EX .

To prove this property, we use the theorem produced by the transpiler (i.e.
the second clause of Theorem 1), identify an appropriate BIR precondition P′,
and prove Condition 2 and the following one:

Verification Condition 4 (BIR termination verification) For every bs such
that bs.p ∈ dom(P′) and eval (P′(bs.p), bs) exists n such that pr : bs  n

LS1
bs′

and bs′.p ∈ EX .

7. Evaluation

Our contribution counts ∼33000 lines of HOL4 code: ∼3000 lines for the
model and semantics of BIR; ∼2000 lines for supporting tools, which includes
the static type checker; ∼10000 lines for helper theorems, which includes val-
idation of emulation of bitvector operators using primitive BIR operators and
support for the weak transition relation; ∼10000 lines for the transpiler, which
includes preproved theorems for computing the effects of template-blocks and
compose them; ∼2000 lines of architecture-dependent proofs to handle pecu-
liarities of CortexM0 and ARMv8; ∼2000 lines for the weakest precondition
predicate transformer; and ∼5000 lines for the precondition simplifier.

7.1. Transpiler benchmarks

A large part of the proof engineering efforts focused on proving the architec-
ture independent transpiler theorems which enable to reduce the run-time cost
of establishing the instruction-theorem. This permits to translate (on a modern
mobile Intel CPU) in average three instructions per seconds.

We experimented with various unmodified binary programs produced by
standard compilers and using standard optimizations:

• An embedded SSL library WolfSSL for both ARMv8 and CortexM0:

– The numlib used to implement asymmetric encryption

– The modules for md5, sha, hmac, pkcs7, elliptic curve, des3, AES,
RSA, and their dependencies

• The run-time of the embedded real-time operating system FreeRTOS for
CortexM0

• Several binaries extracted from Ubuntu 18.04 for ARMv8

– The embedded database SQLite

– The interpreter of the high level language lua

– The libc part of the standard run-time
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Instructions Transpiling Merging Total Rate
CortexM0 - numlib 9605 684 s 222 s 906 s 10.61 i/s
CortexM0 - crypto 21097 1245 s 1276 s 2521 s 8.37 i/s
CortexM0 - RTOS 6292 597 s 118 s 739 s 8.51 i/s
ARMv8 - numlib 5737 853 s 131 s 984 s 5.83 i/s
ARMv8 - crypto 13149 1808 s 643 s 2451 s 5.37 i/s
ARMv8 - lua 37026 10917 s 6614 s 17531 s 2.11 i/s
ARMv8 - SQLite 61134 23734 s 16470 s 40205 s 1.52 i/s
ARMv8 - libc 23362 6264 s 2425 s 8690 s 2.69 i/s
ARMv8 - vim 490398 40 h time out

Table 2: Transpilation benchmark.

J CJ S LB O LO
CortexM0 - numlib 8538 1067 33155 11 121682 71
CortexM0 - crypto 19449 1648 72396 11 269499 71
CortexM0 - RTOS 5605 654 21040 11 80404 71
ARMv8 - numlib 4972 765 14337 7 59284 85
ARMv8 - crypto 11879 1270 32009 7 128307 85
ARMv8 - lua 33429 3209 89840 7 321726 121
ARMv8 - SQLite 54086 6372 144367 7 521370 149
ARMv8 - libc 20069 2825 56912 7 226264 379

Table 3: Size of produced BIR programs. (J) number of jump statements; (CJ) number
of conditional jump statements; (S) total number of statements; (LS) number of statements
of the largest block; (O) total number of operators in the program expressions; (LO) total
number of operators in expressions in the largest block.

– The general purpose application vim

The transpilation consists of two steps: the transpiling step that translates
each instruction independently and produces BIR code and certificates; the
merging step that composes the certificates to derive a single theorem for the
entire program. The performance of the transpiler is reported in Table 2. The
merging procedure is designed to translate single procedures and to enable their
modular analysis. For this reason, it is not optimized to handle monolithic large
binary blobs and the percentage of time spent in the merging step increases with
the number of instructions. Despite this, the merging can handle binary blobs
consisting of more than 50000 instructions. On the other hand, the time needed
to transpile single instructions is independent of the size of the program. In
Table 3 we report metrics regarding resulting BIR programs.

The transpiler relies on the external HOL4 model of the architecture. There-
fore, it does not translate instructions that are not supported by the external
model. For ARMv8, the model does not support floating point operations.
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Instructions Unsupported Supported
CortexM0 - numlib 9605 0 100.0%
CortexM0 - crypto 21097 0 100.0%
CortexM0 - RTOS 6292 33 99.47%
ARMv8 - numlib 5737 0 100.0%
ARMv8 - crypto 11879 0 100.0%
ARMv8 - lua 37026 1161 99.74%
ARMv8 - SQLite 61134 2028 98.68%
ARMv8 - libc 23362 1404 98.11%
ARMv8 - vim 490398 840 99.99%

Table 4: Frequency of unsupported instructions.

Frequency of these instructions are reported in Table 4.
In order to optimize transpilation, instruction theorems are cached. This

permits to reduce the time needed for re-transpiling instructions. Clearly large
programs benefit more from the caching mechanism. Table 5 reports cache hit
for three programs. We split the data for each program in four fragments of equal
size, in order to show that the frequency of cache hits increases while cache is
filled with more instructions. It is worth noticing that cache hits are always less
then 75%. This is connected with the fact that even if instructions are repeated,
they occur with different arguments. For example both add x1, x1, #0x9d8

and add x1, x1, #0x9f8 add a constant to the same register (e.g. to set two
different offsets on the stack), but these two instructions have different encoding
(since the encoding includes the constants): 0x91276021 and 0x9127E021. The
design of the transpiler is oblivious to the decoding of a particular ISA. This
prevents us to detect that these two instructions represent the same operation
with different constants. On the other hand, this design allows the tool to be
easily extended to support new architectures, since it delegates the inspection
of the binary code to the step theorem of the external model.

7.2. Weakest Precondition benchmarks

For evaluating the weakest precondition procedures, we used a selection of
the binaries transpiled: the numlib and the crypto library for both CortexM0
and ARMv8. The weakest precondition procedure is automatic only for loop-free
programs, for this reason we extracted loop free fragments using an automatic
procedure. Due to the time needed to execute the weakest precondition pro-
cedure, we limit the size of the extracted fragments to 150 blocks. We also
report the benchmarks for the complete implementation of AES, which is part
of the crypto library and is considerably larger than the limit imposed to the
automatic extractor.

For our experiments we use the postcondition: Q = true. Even if minimal,
establishing it is not trivial, since the weakest precondition entails all inter-
mediate assertions generated by the transpiler: i.e. there is no memory error
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Subset Cache hits Percentage of hits
lua (1/4) 5084 54.92%
lua (2/4) 5626 60.77%
lua (3/4) 6688 72.24%
lua (4/4) 6647 71.82%
SQLite (1/4) 8064 52.76%
SQLite (2/4) 10035 65.65%
SQLite (3/4) 9651 63.14%
SQLite (4/4) 10043 65.71%
libc (1/4) 1990 34.06%
libc (2/4) 2794 47.83%
libc (3/4) 3002 51.39%
libc (4/4) 3186 54.56%

Table 5: Cached instructions in ARMv8 binaries.

fragments avg. size avg. time max. size time
CortexM0 - AES 3 177 372 s 269 568 s
CortexM0 - numlib 189 8 7 s 96 150 s
CortexM0 - crypto 299 10 16 s 131 529 s
ARMv8 - AES 2 268 494 s 282 511 s
ARMv8 - numlib 151 10 7 s 106 150 s
ARMv8 - crypto 245 10 8 s 72 109 s

Table 6: Benchmarks for weakest precondition.
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that can lead to code injection and all memory accesses are correctly aligned
(which is required to compute the step theorems). Therefore, establishing the
postcondition true rules out the error states from transpilation theorems. Ta-
ble 6 reports the number of fragments extracted, their average number of BIR
blocks, the size of the largest block, and the time (average and maximum) to
compute the weakest precondition. The average time to propagate a weakest
precondition for one block is 1.2 seconds. This time refers to the first phase of
the procedure, and does not include application of the optimization procedure
and the substitutions.

Comparing the optimization procedure with respect to the naive expansion
of the substitution is possible only for relatively small fragments, because the
time required by the naive approach increases quickly.

We compared the two approaches for the last 70 instructions of the AES en-
cryption procedure. In this case, the weakest precondition consists of 1170 BIR
operators and includes 70 substitutions for ARMv8; and 1576 BIR operators
and 133 substitutions for CortexM0. Naively applying the substitutions for the
ARMv8 expression requires 49.0 minutes and produces a weakest precondition
consisting of 7 million BIR operators. For CortexM0, the same approach re-
quires 7.5 hours and produces an expression of 25 million BIR operators. The
execution of our optimization procedure requires 1.7 minutes and produces an
expression with 1377 BIR operators for ARMv8. For CortexM0 this takes 2.3
minutes and produces an expression with 1335 BIR operators.

Once the weakest precondition is computed, it can be verified to be entailed
by the program precondition. In the case of the AES encryption procedure, the
precondition constraints the stack to be separated from the program memory,
and the function argument (i.e. the content of the stack containing the pointers
to the the block to be encrypted and the encryption key) to not overlap with the
stack and the program memory. The validity of the tautology is checked using
the external SMT solver Z3. We could not use the existing HOL4 Z3 export
that provides proof reconstruction, since it cannot handle the theory of arrays,
which is necessary for modeling memory loads and stores. For this reason, we
developed a small untrusted export that supports the BIR operators.

8. Concluding remarks

We presented the main building blocks of TrABin, a platform for trustwor-
thy analyses of binary code. These consist of the HOL4 formal model of the
intermediate language BIR, the implementation of a transpiler for binary pro-
grams, and a weakest precondition predicate transformer. TrABin overcomes
two of the main barriers in adopting binary analysis platforms to formally ver-
ifying binary code: the need for trusting translation soundness and the lack of
a formal ground for correctness of the analyses.

We demonstrated the proof producing transpiler for two common architec-
tures: ARMv8 and CortexM0. To handle other machine architectures (e.g. x86,
x64, ARMv7, MIPS, RISC-V), new transpilers must be developed. Fortunately,
among 12000 lines of the transpiler, only 2000 are architecture specific, which
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permits to easily adapt the translation to support existing (and upcoming)
HOL4 ISA models that are equipped with the step function.

The proof producing tool to generate weakest preconditions demonstrates
that the platform can be used to create trustworthy analyses and is a key com-
ponent for a trustworthy semi-automatic verification tool based on pre/post
conditions for binary code. Such tools can be developed by developing a sound
satisfiability solver for bitvectors to check if the precondition entails the weakest
precondition. Böhme et al. [30] demonstrated HOL4 proof reconstruction for
Z3 [31] capable of handling the theory of fixed-size bit-vectors. However, the
current implementation lacks support for arrays, which are needed to handle
memory loads and stores. Also, to make the use of the verification tool prac-
tical, some supporting analyses are needed, like loop unrolling and heuristics
for indirect jump resolution. Fortunately, these analyses can be build on top of
contract based verification, which allows us to reuse the existing infrastructure
to prove correctness of their results.

An ongoing research activity is extending the BIR language and the sup-
porting tools to handle non-functional aspects of hardware architectures, for
instance to represent cache accesses performed by a binary program. This can
enable the development of trustworthy static analysis of side channels, including
timing and power consumption, in the style of CacheAudit [24].

TrABin artifacts

The source code of the analysis platform, including the BIR model, the
transpiler, the weakest precondition generator, and the binaries used for bench-
marking, are available at https://github.com/andreaslindner/HolBA.
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